Using diel movement behavior to infer foraging strategies related to ecological and social factors in elephants
نویسندگان
چکیده
BACKGROUND Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. RESULTS Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. CONCLUSIONS Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement behavior. Beyond situations of contest competition, rank status appears to influence the extent to which individuals can modify their movement strategies across periods with differing forage availability. Large-scale spatiotemporal resource complexity not only impacts fine scale movement and optimal foraging strategies directly, but likely impacts rates of inter- and intra-specific interactions and competition resulting in socially based movement responses to ecological dynamics.
منابع مشابه
Inferring ecological and behavioral drivers of African elephant movement using a linear filtering approach.
Understanding the environmental factors influencing animal movements is fundamental to theoretical and applied research in the field of movement ecology. Studies relating fine-scale movement paths to spatiotemporally structured landscape data, such as vegetation productivity or human activity, are particularly lacking despite the obvious importance of such information to understanding drivers o...
متن کاملDiel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution
Humpback whales Megaptera novaeangliae have adopted unique feeding strategies to take advantage of behavioral changes in their prey. However, logistical constraints have largely limited ecological analyses of these interactions. Our objectives were to (1) link humpback whale feeding behaviors to concurrent measurements of prey using scientific echo-sounders, and (2) quantify how sand lance beha...
متن کاملAfrican Elephants Adjust Speed in Response to Surface-Water Constraint on Foraging during the Dry-Season
Most organisms need to acquire various resources to survive and reproduce. Individuals should adjust their behavior to make optimal use of the landscape and limit the costs of trade-offs emerging from the use of these resources. Here we study how African elephants Loxodonta africana travel to foraging places between regular visits to waterholes. Elephant herds were tracked using GPS collars dur...
متن کاملSocial life, evolution of intelligence, behaviour and human brain size
Social life is one of the most critical factors of the evolution of the behavior of non-human primates and humans. Several factors, such as an increase in brain size, adaptive modules, and grooming, are related to the complexities of social groups. Although some scientists have mentioned foraging as a rival hypothesis for the evolution of behavior, in this research, we tried to investigate the ...
متن کاملSexual Risk Behaviors Constructed in Iranian Women’s Life with Substance Use Disorders: A New Implication of Human Ecological Theory
Background: Drug abuse is one of the important variables influencing protective sexual behavior. The objective of this study was to explore how risky sexual behaviors develop in drug abusing women using human ecological theory.Methods: In this study, we used a descriptive exploratory approach. The participants were 32 drug abusing women from two of the selected drop-in centers (DICs) in south T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2013